
R with future

Fabian Freund, Brigitte Wellenkamp
(KIM Hohenheim, bwHPC)

July 26th, 2022
ZOOM

Parallel computation in general

Computing in parallel: “Separate” computations are performed on
different threads/cores

I Parallel without communication

I Parallel with communication

I in R: opens new instances of R (forked, socket cluster, MPI, via
SLURM jobs)

Other specifics:

I Parallelisation over CPUs vs. over GPUs (latter not covered
today)

I Multithreading: Parallelisation with shared memory, typically
working on the same (big) task

Parallelisation without communication

I No communication needed (only collection of results)
I Running script on different data sets
I Simulations (distribute replications and/or parameters sets)

Main issues when computing in parallel
I Load balancing
I Copying of objects between R instances
I (Nested parallelisms)
I Setting seeds
I (Overhead of parallelisation approach)

Working on bwUniCluster

To run the code on bwUniCluster, open an interactive session
salloc -t 120 -p single -n 2
module load math/R/4.1.2

Part 1 and part 2 of this course should also run on most local
computers (if > 1 CPU).

Prerequisites

Install the following R packages on bwUniCluster (we use R 4.1.2)
install.packages(c("future","parallelly",

"future.apply","doFuture",
"future.batchtools",
"tictoc")) #tictoc for very easy timing of code

futureverse project leader: Henrik Bengtsson (Department of
Epidemiology & Biostatistics at UCSF)

Homepage, latest releases on CRAN.

Main package: future

https://www.futureverse.org/
https://cran.r-project.org/web/packages/future/index.html

R libraries needed today

library("future")
library("parallelly")
library("future.apply")
library("doFuture")

Loading required package: foreach
library("future.batchtools")
library("tictoc")

The idea behind R future
I R usually allocates and computes in one step
I future wraps the assignment up in a new object - which can

then be computed/resolved on any R process
I (and NOT NECESSARILY IN THE ONE IT WAS DEFINED

IN).

library(future)
x <- 1
mode(x)

[1] "numeric"
future_x <- future(1,lazy = TRUE)
mode(future_x)

[1] "environment"
mode(value(future_x))

[1] "numeric"

General scheme of future

I Any future(...) you run can be run in serial or parallel
(forked, socket cluster,. . . , via SLURM)

I You simply specify how any futures are run by plan(...).
This is called the parallel resp. serial backend

I Seeds can be set in such a way that results stay reproducible
regardless of backend (via l’Ecuyer RNG)

⇒ Code stays the same when you switch the backend, essentially
you only change plan(...)

Some interesting plans on a single node

I plan(strategy=sequential): Serial execution of futures
within the main R session

I plan(strategy=multicore,workers=n): Forks n workers
from main R (not on Windows, not in GUIs as Rstudio)

I plan(multisession,workers=n): n separate (background)
R processes as workers

I The main R waits for all futures to be distributed across
workers - main R only blocked after this if # workers < #
futures

I Change the plan by simply invoking a different plan

Details on future

str(future)

I lazy: Should future(. . .) be evaluated asap or only when
queried for value?

I seed (default=FALSE): Should seeds be set (via L’Ecruyer
RNG, reproducible regardless of backend used)

I globals: control over R objects that future needs from the
global environment (auto-identified by default)

I packages: specific packages needed to evaluate the future

The difference between futures and assign (aka <-)
#availableCores(); availableWorkers()
plan(strategy=multisession,workers=4)
testf1 <- function(){Sys.sleep(6);return(Sys.getpid())}
s1 <- replicate(3,future(testf1()))
sapply(s1,resolved)

[1] FALSE FALSE FALSE
sapply(s1,value)

[1] 24236 24237 24235
replicate(3,value(future(testf1())))

[1] 24236 24236 24236

Exercise: Does this behave differently if workers=2?

Check package
‘promises‘ for non-blocking futures

The difference between futures and assign (aka <-)
#availableCores(); availableWorkers()
plan(strategy=multisession,workers=4)
testf1 <- function(){Sys.sleep(6);return(Sys.getpid())}
s1 <- replicate(3,future(testf1()))
sapply(s1,resolved)

[1] FALSE FALSE FALSE
sapply(s1,value)

[1] 24236 24237 24235
replicate(3,value(future(testf1())))

[1] 24236 24236 24236

Exercise: Does this behave differently if workers=2? Check package
‘promises‘ for non-blocking futures

Futures make any loop or vectorization parallel
set.seed(44)
testf1 <- function(){Sys.sleep(sample(6))

return(Sys.getpid())}
res1 <- vector("list",10)
for (i in 1:10){
res1[[i]] <- future(testf1(),seed=TRUE)
}
str(res1[[1]])

Classes 'MultisessionFuture', 'ClusterFuture', 'MultiprocessFuture', 'Future', 'environment' <environment: 0x564b060954a0>
res2 <- sapply(res1,value)
table(res2)

res2
24234 24235 24236 24237
3 3 2 2

“Exercise”: Use vectorization (*apply) instead of the loop

Timing via R package tictoc

tic()
Sys.sleep(3) #Any code
toc()

3.004 sec elapsed
tic()
Sys.sleep(3)
toc()

3.006 sec elapsed

A test function and some R objects

test_node <- function(i,exportsth=NULL){
str(exportsth) #Do sth. cheap w. object
p1 <- date() #get date
sleep_t <- sample(10,1) #random sleep time
Sys.sleep(sleep_t) #sleep in R
x <- Sys.info() #System info, including host name
return(c(run=i,time_start=p1,time_end=date(),

pid=Sys.getpid(),host=x["nodename"],
sleep_time=sleep_t))}

small_thing <- "cookies"
big_thing <- matrix(rnorm(1e6),nrow=1000)

Exercise: Compare future’s plans

Test the behaviour of plans multisession and multicore with 3
workers

I Use the test function test_node and “force” it to import a big
or small object

I Use some method to run several (4) instances of this test
(which then get distributed via plan)

I Time the executions
I Are there differences? How is the load balancing?

Hints: general structure
library(....), ...

#For each plan to test

tic()
set.seed(...)
plan(...)

LOOP i 1:4 start
... <- future(...(i),seed=TRUE)
LOOP end

LOOP start
value(future i)
LOOP end

toc()

