
Examples: for-loop, if-else-condition

KIM bwHPC group

2022-10-10

Sect. 0: Bash variables
You can set variables in bash and then later retrieve their values by addressing them via $. These are only
temporarily set, i.e. set only in this bash environment.

In the following code snippets: everything after # is just a comment (and will also be ignored when executing
the full line in a bash shell).
echo $HOME #preset variable: Your home directory
echo "Value of testvar:" $testvar #not assigned yet...
testvar=TEST1 #Assign TEST1 to a new variable testvar
echo $testvar

/home/fabfreund
Value of testvar:
TEST1

ADVANCED: Variables defined as described above are just present in this specific bash instance/shell.
For instance, they are not present within a bash script run within this shell. If you want to have it
present in all child shells (still temporarily), use export (so the assignment above would change to export
testvar=TEST1). Such variables are called environment variables, the bash command printenv shows all
of them (temporary and permanent).

Sect. 1: For-loops
If you want to run the same command(s) across a set of values (a list) in bash, you can use a for-loop. Find
two examples below to see the basic syntax. The running variable of the loop is set as a bash variable.
for it1 in 1 2 3 4 5 #You name the running variable and provide the list
do
echo $it1 #Adress loop variable via $
done

echo "Last it1 value: " $it1 #Last value from the loop

1
2
3
4
5
Last it1 value: 5

for word1 in this is an example
do
echo $word1
done

1

this
is
an
example

Exercise 1: Wha happens here?
echo this is new > test1.txt #In one line
echo or is it? >> test1.txt #2nd line
for var1 in $(cat test1.txt)
do
echo $var1
done

Exercise 2: Use a for-loop to echo all file names in your current directory

Sect. 2: Bash conditions (if . . . else . . .)
You may want to only execute a command if a condition is met or execute different commands depending on
a condition. For this, you can use the if-else syntax in bash. The condition is within square brackets [. . .]
(with spaces left and right).

In this introduction, we only touch how to compare two integer numbers or two text strings

You can have a single if-condition, so nothing happens if the condition is not met:
it1=-1
echo $it1
if [$it1 -gt 0] #is integer it1 > 0?
then
echo "it1 is positive"
fi

-1

You can have an if-else condition, where one command runs if the condition is met and another one if it is
not met.
it1=-1
echo $it1
if [$it1 -lt 10] #is integer it1 is < 10
then
echo "it1 is smaller than 10"
else
echo "it1 is at least 10"
fi

-1
it1 is smaller than 10

You can also nest one if condition in another one
it1=-1
doit=NO
if [$doit != "NO"]
then

if [$it1 < 0]
then

echo "it1 is negative"
else

2

echo "it1 is non-negative"
fi

else
echo "I was told to do nothing!!!"

fi

I was told to do nothing!!!

Exercise: Set variables it1 and doit to different values to generate all different outputs of the three examples.

Here is a non-exhaustive list of possible conditions to check, including the ones used above

• [int1 -gt int2] first integer int1 is bigger than second integer int2
• [int1 -lt int2] first integer int1 is smaller than second integer int2
• [int1 -eq int2] first integer int1 is equal to second integer int2
• [int1 -ne int2] first integer int1 is equal to second integer int2
• [str1 == str2] text strings str1 and str2 are identical
• [str1 != str2] text strings str1 and str2 are not identical

Advanced: [. . .] runs the bash command test on the condition within the square brackets. See man test
for more conditions to check, e.g. for file comparisons (so argument is a file name),

3

	Sect. 0: Bash variables
	Sect. 1: For-loops
	Sect. 2: Bash conditions (if … else …)

